Hbase客户端优化

/ mysql / 没有评论 / 2500浏览

Scan Caching

scanner一次缓存多少数据来scan(从服务端一次抓多少数据回来scan)。默认值是 1,一次只取一条。

Scan Attribute Selection

scan时建议指定需要的Column Family,减少通信量,否则scan操作默认会返回整个row的所有数据(所有Coulmn Family)。

Close ResultScanners

通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。

Optimal Loading of Row Keys

当你scan一张表的时候,返回结果只需要row key(不需要CF, qualifier,values,timestaps)时,你可以在scan实例中添加一个filterList,并设置 MUST_PASS_ALL操作,filterList中add FirstKeyOnlyFilter或KeyOnlyFilter。这样可以减少网络通信量

Turn off WAL on Puts

当Put某些非重要数据时,你可以设置writeToWAL(false),来进一步提高写性能。writeToWAL(false)会在Put时放弃写WAL log。风险是,当RegionServer宕机时,可能你刚才Put的那些数据会丢失,且无法恢复

启用Bloom Filter

Bloom Filter通过空间换时间,提高读操作性能。

什么时候需要Write Buffer?

默认情况下,一次Put操作即要与Region Server执行一次RPC操作,其执行过程可以被拆分为以下三个部分:

  1. RTT(Round-Trip Time),即网络往返时延,它指从客户端发送数据开始,到客户端收到来自服务端的确认,总共经历的时延,不包括数据传输的时间;
  2. 数据传输时间,即Put所操作的数据在客户端与服务端之间传输所消耗的时间开销,当数据量大的时候,T2的开销不容忽略;
  3. 服务端处理时间,对于Put操作,即写入WAL日志(如果设置了WAL标识为true)、更新MemStore等。

其中,T2和T3都是不可避免的时间开销,那么能不能减少T1呢?假设我们将多次Put操作打包起来一次性提交到服务端,则可以将T1部分的总时间从T1 * N降低为T1,其中T1为一次RTT时间,N为Put的记录条数。正是出于上述考虑,HBase为用户提供了客户端缓存批量提交的方式(即Write Buffer)。假设RTT的时间较长,如1ms,则该种方式能够显著提高整个集群的写入性能。那么,什么场景下适用于该种模式呢?下面简单分析一下:

如何配置使用Write Buffer?

如果要启动Write Buffer模式,则调用HTable的以下API将auto flush设置为false:

void setAutoFlush(boolean autoFlush)

默认配置下,Write Buffer大小为2MB,可以根据应用实际情况,通过以下任意方式进行自定义:

  1. 调用HTable接口设置,仅对该HTable对象起作用:
void setWriteBufferSize(long writeBufferSize) throws IOException
  1. 在hbase-site.xml中配置,所有HTable都生效(下面设置为5MB):
hbase.client.write.buffer
5242880

该种模式下向服务端提交的时机分为显式和隐式两种情况:

  1. 显式提交:用户调用flushCommits()进行提交;
  2. 隐式提交:当Write Buffer满了,客户端会自动执行提交;或者调用了HTable的close()方法时无条件执行提交操作。

Write Buffer有什么潜在的问题?

  1. 首先,Write Buffer存在于客户端的本地内存中,那么当客户端运行出现问题时,会导致在Write Buffer中未提交的数据丢失;由于HBase服务端还未收到这些数据,因此也无法通过WAL日志等方式进行数据恢复。
  2. 其次,Write Buffer方式本身会占用客户端和HBase服务端的内存开销,具体见下节的详细分析。

如何预估Write Buffer占用的内存?

客户端通过Write Buffer方式提交的话,会导致客户端和服务端均有一定的额外内存开销,Write Buffer Size越大,则占用的内存越大。客户端占用的内存开销可以粗略地使用以下公式预估:

hbase.client.write.buffer * number of HTable object for writing

而对于服务端来说,可以使用以下公式预估占用的Region Server总内存开销:

hbase.client.write.buffer hbase.regionserver.handler.count number of region server

其中,hbase.regionserver.handler.count为每个Region Server上配置的RPC Handler线程数。